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Using a digital simulation method, we analyzed the relationship
between natural frequency Un) and damping coefficient (0 of the
catheter-manometer system required for high-fidelity measurement of
the pulmonary arterial pressure. The pulmonary artery pressure wave-
form was obtained with a catheter-tip transducer and it was fed into a
dynamic simulator programmed on a computer. The original waveform
and the output of the simulator were compared and judged visually for
the fidelity. From this analysis, the combination of in and ( was ob-
tained and was plotted on a in - ( diagram. It showed as an area, which
was convex on the left side and open on the right side. The left-convex
endpoint was located at a damping coefficient of about 0.1. At a lower
heart rate, this area was extended to the lower frequency side, while, at
a higher heart rate, this area was limited to the higher frequency side.
The in-( diagram was also constructed theoretically by calculating the
relations between natural frequencies and damping coefficients of a sec-
ond order system with the amplitude and phase error tolerance set at
+j -5% respectively. (Key words: frequency characteristics, catheter-
manometer system, natural frequency, damping coefficient, dynamic
simulation)

(Kinefuchi Y, Suzuki T, Takiguchi M, et al.: Natural fre-
quencyjDamping coefficient relationship of the catheter-manometer
system required for high-fidelity measurement of the pulmonary arte-
rial pressure. J Anesth 1: 419-426, 1993)

The aim of this investigation is to
analyze a frequency response of the
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catheter-manometer system required
for accurately measuring pulmonary
arterial waveform. Waves distorted on
amplitude axis may lead to errors in
pressure readings and waves distorted
on time axis may cause undue delay
when compared with other parameters
such as ECG or arterial pressure. Fur-
thermore, accuracy of depicting tran-
sient phenomena is of great importance
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as in pulmonary artery occlusion to
estimate pulmonay capillary pressure.
Usually, such analysis is performed on
individual catheter-manometer systems
experimentally. If we can define this
system in a general term, we should
be able to analyze this theoretically on
general terms.
Experimental results of the fre-

quency characteristics of the catheter-
manometer system for frequencies
up to 30 Hz indicate the follow-
ing characterist ica'<". The curves are
flat in the lower frequency range. A
so-called resonant phenomenon is ob-
served in a frequency range of 8 to
14 Hz. In the higher frequency range
it declines at a rate of -12 dB/octs.
These characteristics show that the
system is of a simple second order.
A second order system applied to a

catheter-manometer system consists of
the catheter's elastic recoil and inertial
(mass) and frictional properties of its
internal fluid. These individual compo-
nents then determine two parameters;
the natural frequency (In), and the
damping coefficient «(). The last two
parameters are measurable and strictly
characterize the dynamic response of
any catheter-manometer systemv",
We, therefore, studied the relations

of natural frequency and damping co-
efficient and developed a simulated
catheter-manometer system within a
computer. Using this simulator, we
compared the original waveform and
the waveform through the catheter-
manometer system when two parame-
ters were varied.

Materials and Methods

(1) Dynamic simulation: The pres-
sure applied to the tip of the catheter
equilibrates with 3 forces, Le., the in-
ertial force, the elastic force and the
frictional force as mentioned above.
The kinetic equation of this type
may be given by the following gen-
eral expressionv f'.

1/(wn)2d
2x/dt2+(2(n)dx/dt+x=p

In the above equation, W n denotes the
natural frequency expressed with an-
gular frequency, and (, the damping
coefficient. The frequency is given as t,
W n = 21ff n' P is the original (true) pul-
monary arterial pressure waveform and
x is the waveform obtained through
the catheter manometer system. Meas-
urement of the pulmonary arterial
pressure waveform is dependent only
on the values of Wn (or in) and (.
Runge Kutta algorithm9- 11 is con-

structed on a computer (PC98RL;
NEC, JAPAN) and applied in solving
this differential equation. The time in-
tervals for the algorithm were 2 msec.
The ranges studied were 3-60 Hz for
natural frequency, and 0.05-2.0 for the
damping coefficient, respectively. The
pulmonary arterial pressure waveform
was recorded digitally on the computer
after AD conversion. The calculation
was later performed yielding the value
of x in the above equation.
(2) Frequency analysis of pul-

monary arterial pressure: Six mongrel
dogs, ranging from 10 to 14 kg in
body weight, were used for this part
of the study. Anesthesia was induced
with 20 mg-kg" ' of pentobarbital and
maintained with nitrous oxide and oxy-
gen. A catheter-tip transducer hav-
ing the frequency bandwidth of DC
to 1 Kz (PT-157J; Goodtec, U.S.A.)
was inserted into the pulmonary artery
through the femoral vein.
Tachycardia with a heart rate of

150+/-5 bpm was produced by ad-
ministration of 0.5 mg atropine sulfate,
and bradycardia with a heart rate of
90+/-5 bpm was produced by ad-
ministration of 2 mg neostigmine. At
their respective stable heart rate, the
waveforms from the catheter-tip trans-
ducer were recorded on a magnetic
data recorder (A67; SONY, JAPAN).
A typical waveform was chosen for
each heart beat, which was converted
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(2) at 30 Hz are shown. The
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the range from 0.2 LO (A-E in
the figure) against the original
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waveform of pulmonary artery
pressure directly obtained (8 in

(2) the figure). See text for details.

into the digital data file through an AD
converter having the precision of 12
bits conversion (Analog'Proff; Canopus
Electronics, JAPAN).
Frequency analysis of the waveform

at each heart rate was performed by
use of the fast Fourier transform al-
gorithm on the above-mentioned com-
puter. Within the sampling intervals of
5 msec, the data number of 1024, and
the duration of each sampling time of
5.1 sec, the ensemble mean of 6 repeats
of measurement over about 31 con-
secutive seconds was taken. The error
components due to data sampling were
corrected with cosine-taper window.
For obtaining the relationship be-

tween natural frequency and damp-
ing coefficient required for high-fidelity
measurement, we performed the follow-

ing procedure. We fixed the natural
frequency at certain frequency and ad-
justed the damping coefficient so that
no discernible differences between sim-
ulated and original waveforms are ob-
tained. Thus we obtained one pair of
natural frequency and damping coeffi-
cient. We then varied the natural fre-
quency and found the corresponding
damping coefficient. With this proce-
dure, a range of combination of natural
frequency and damping coefficient was
constructed. Heart rates of 154 bpm
(2.5 Hz) and 91 bpm (1.5 Hz) were cho-
sen. The following criteria were applied
for evaluating the fidelity of the wave-
form: (a) wave heights that were con-
sistent within a tolerance of +/-5%j
(b) a negligible or no oscillation due to
under-damping; and (c) uniform time
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Fig. 2. Adequate frequency
response area given by natural
frequency and damping coeffi-
cient (in - () diagram).
Two areas convex on the

left and open on the right side
marked as 154 and 91 show the
adequate frequency response ar-
eas where high-fidelity wave-
forms can be obtained at the re-
spective heart rate. The natu-
ral frequencies must be 17.5 Hz
or higher at 154 bpm, and 12.5
Hz or higher at 91 bpm, and in
the higher frequency range, the
range of damping coefficient to
be adjusted gradually becomes
wider. See text for details.

lag over the entire waveform.

Results

(1) Relations of waveform distor-
tion to the natural frequency and
damping coefficient by dynamic sim-
ulation: Figure 1 shows a plot of some
of the simulated distortion data at a
heart rate of 91 bpm (1.5 Hz). In figure
1(1) the natural frequency was set at
7.9 Hz, with the damping coefficient
varied in the range from 0.2 to 1.0 (A-E
in the figure). With a smaller damping
coefficient, "overshoot" in the wave-
form, as well as an occurrence of oscil-
lation or ringing were observed. With
a larger damping coefficient, the wave-
form became smoothed out, and high
frequency components were lost, asso-
ciated with a large time lag in the en-
tire waveform. At a damping coefficient
of about 0.6, the optimal waveform was
obtained, giving a correct peak pres-
sure value, but there were discernible
differences between the two waveforms.
In other words, it is obvious that with
the natural frequency set at 7.9 Hz, it
is impossible to obtain a waveform with
fidelity, even if the damping coefficient
is adjusted to an optimal setting.

Figure 1(2) represents another ex-
ample at a natural frequency of 30
Hz. With a damping coefficient of 0.2
(A in the figure), a small overshoot-
ing occurred, but the waveform was
associated with a minimal time lag
and with excellent details of waveform.
Figures 1(1) and 1(2) show that with
higher natural frequency of the system,
the details of the original waveform
were maintained accurately. A wave-
form with the highest fidelity was ob-
tained with a damping coefficient of
about 0.6. As for the time lag, the
smaller the damping coefficient, the
smaller was the time lag of the entire
waveform.
The range of combination of natu-

ral frequency and damping coefficient
required for high-fidelity measurement
is shown in figure 2. In the figure,
the abscissa represents the natural fre-
quency, and the ordinate, the damping
coefficient; two areas convex on the left
side and open on the right side, and
marked as 154 and 91 represent the ad-
equate frequency response areas at the
respective heart rates. The lowest nat-
ural frequencies were 17.5 and 12.5 Hz
respectively, when the damping coeffi-
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Fig. 3. Changes in simulated waveforms on

the fn - ( diagram.
The simulated waveforms at the points

marked VI-V4 in figure 2 are given in (1);
and those marked HI-H4, in (2). The higher
the natural frequency, the higher fidelity wave-
form is reproduced, and the highest is obtained

at a damping coefficient of about 0.7, and the

higher the natural frequency, and also the lower

the damping coefficient, the time lag becomes

smaller.
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cient had to be adjusted to about 0.6~
0.7. The allowance of damping coeffi-
cient becomes gradually greater with
the higher natural frequencies.
Figure 3(1) shows the examples of

simulated waveform at Vl~V4 in figure
2. At any natural frequency, a damping
coefficient of 0.6-0.7 yielded a wave-
form of the highest fidelity. As for the
time lag, however, the lower the damp-
ing coefficient, the smaller the time
lag. Figure 3(2) shows the results of
simulation at HI-H4 in figure 2. At
a fixed damping coefficient, the higher
the natural frequency, the better the
waveform fidelity and the smaller the
time lag.
(2) Frequency components of pul-

(1) fn= 16Hz (2) t=O.7 monary artery pressure waveform fig-
ure 4 shows the frequency components
of pulmonary artery pressure waveform
at the heart rates of 154 bpm (2.5 Hz)
and 91 bpm (1.5 Hz). The frequency
components were described as the har-
monics of the basic or fundamental
heart rate. In the figure, the power of
each harmonic is normalized with the
power of fundamental harmonic corre-
sponding to the heart rate as 1. If
the harmoncis corresponding to 5% or
more of the power of fundamental har-
monic are taken as effective waveform
components, they are distributed to
12.5 Hz and 7.5 Hz, which correspond
to the fifth harmonic, respectively. The
pressure waveform varies greatly with
the status of circulation, associated
with changes in the frequency com-
ponents, but the power of those har-
monics above the fifth is small and
mostly falls within the basic noise level
of the system. This finding is consistent
with those reported by Gersh", Patel
et a1.12 , and Milnorr", The frequency
band-width of pulmonary artery pres-
sure waveform may therefore be taken
as about 5 times the heart rate, which
is also a band-width required for a
catheter-manometer system. The rela-
tions of the required band-width of
catheter-manometer system to the 2
parameters described in the preceding
section are discussed later.

Discussion

The solution of the second-order sys-
tem and its dynamic simulation is
feasible by building a specific circuit
network with an analog computer or
operational amplifiers5 ,14 . While such
analogue technique may be suitable
for real-time operation, it is less so
when subsequent analysis is planned.
In our analysis, we needed frequency
analysis and secondary data processing
related to natural frequency and damp-
ing coefficient. We, therefore, employed
the digital operation using the Runge-
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Fig. 4. Distribution of frequency com-
ponents of pulmonary artery pressure wave-
form.
The frequency components of pulmonary

artery pressure waveform at the heart rates
of 154 bpm (2.5 Hz) and 91 bpm (1.5 Hz) are
shown. The power of each harmonic is nor-
malized with the power of fundamental har-
monic corresponding to heart rate as 1. The
harmonics corresponding to 5% or larger of
the power of fundamental harmonic are dis-
tributed to 12.5 and 7.5 Hz, corresponding
to 5 times the heart rate.
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Kutta method. The operation speed on
a small computer is rather slow, but
it is not an essential problem involved
in this theme. It is possible to speed
up the operation by electing a more
adequate program language and imple-
menting a device with a high-speed
operation.
Figure 2 is similar to that reported

by Gardner on the relations of arte-
rial pressure waveform to natural fre-
quency and damping coefficient l", Us-
ing the arterial pressure waveform as
an objective, he produced 2 adequate
frequency response areas at the mean
heart rates of 94 bpm and 118 bpm by
use of an analog simulator. As we did,
he visually judged the quality of sim-
ulated waveforms, although he did not
clearly state his criteria. When his area
at a heart rate of 94 bpm is compared
with our area at a close heart rate,
i.e., 91 bpm, his adequate frequency
response area is lower in frequency of
about 5.5 Hz. The discrepancies be-
tween our findings and his may have
derived either from the difference in
the criteria used or from the differ-
ence in the frequency band-width of
the original waveform. In any event, it

is unavoidable that the range of ad-
equate frequency response area varies
with heart rate and waveform.
Up to this point, we judged the fi-

delity on visual pattern. This is sub-
jective and is bound to vary from one
researcher to the other. We may use
a more scientific, objective criteria for
the fidelity. For this purpose, we chose
the error on frequency-amplitude and
frequency-phase response. We set the
error tolerance to be +/-5% and then
calculated theoretically the combina-
tion of natural frequency and damp-
ing coefficient accordingly. Figure 5
represents the results. In the figure,
!h denotes the highest frequency at
which the wave may be accurately re-
producible. As shown in figure 4, the
band-width extends to the frequency
of 5 times the heart rate, and which
corresponds to ih. This means that the
heart rate (in bpm) equivalent to !h
equals 60 times of h. divided by 5. HR
in the parenthesis shows this equiva-
lent heart rate. For example, a heart
rate of 91 bpm equals 1.5 Hz and a
required band-width for this rate is 7.5
Hz, which is the !h for this condition.
We do not have a line for ilL of 7.5 in
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Fig. 5. Adequate frequency response area calculated theoreti-
cally with the error tolerance set at +/-5% Un - (; diagram).
This figure indicates the area where adequate frequency response

may be obtained. The relationships between the damping coefficient
((;) and natural frequency Un), and the fh, the highest frequency ob-
tainable within +/-5% error, are shown on the graph for 1h values
of 2, 4, 6, 8 and 10 Hz. HR in the parenthesis equals 60 times of 1h
devided by 5, and means the highest heart rate corresponding to fh

(see txt for details). The combination of the damping coefficient and
natural frequency of the measuring system should be on the right
side of the corresponding !h line. In other words, the fh line set the
highest frequency <It. which the wave may be accurately reproducible.

figure 5, but by interpolation we obtain
the coresponding natural frequency be-
ing around 14 Hz, the lowest frequency
point on the line for fh of 7.5. This
area is higher in frequency by about
1.5 Hz than that given in figure 2, and
higher by about 7 Hz than that given
by Gardner!". Although it is not defini-
tive whether the tolerance of +/-5%
of figure 5 is adequate as criteria for
judgment, the results given in figure 2
are dose to this area, while Gardner's
area appears too broad. This clearly
shows that the adequate frequency re-
sponse area always depends on the
frequency range of original waveform.
We insists that it should be accompa-
nied by the explicit statement of the
frequency range of original waveform.
Alternatively the heart rate should be

specified at least as a substitute for the
former. In this sense, the adequate fre-
quency response area shown in figure 5
is most universal.
The frequency characteristics of the

catheter manometer system has been
evaluated on the adequate frequency
response area created by the technique
of dynamic simulation. On its appli-
cation, we may reverse the process.
From the waveform of the catheter-
manometer system, we may reproduce
the original waveform by passing the
signal through a filter, which corrects
or compensates for the frequency de-
pendence of the catheter-manometer
system. This study established the ba-
sic ground on which the operation of
such reverse transfer function is ap-
plied.
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Example: If the damping coefficient is
0.7 and natural frequency is 10 Hz, then

the system is adequate for measuring up
to 2 Hz (the point is located to the right
to fh of 2 Hz line), but inadequate for
measuring up to 6 Hz (the point is located

to the left to fh of 6 Hz line). For more
than 0.7, the system is overdamped. The

required natural frequency for the same
fh increases. For less than 0.7, the system
is underdamped. The requried natural fre-
quency for the same fh again increases.

For obtaining these lines for fh values, see
Appendix.
Appendix: The procedure for obtain-

ing lines in figure 5 is as follows. First, for
each damping coefficient, we defined the
frequency range or ranges in which both
amplitude- and phage-error are within

+/-5% on Bode diagram. This informa-
tion is then transformed to the relation-

ship between fh-natural frequency and
damping coefficient of the system. The
results were plotted OIl the axis of damp-
ing coefficient (ordinate) and natural fre-

quency (abscissa) as figure 5. The actual
calculation is done by a complex computer
software developed by the authors.

(Received May I, 1992, accepted for
publication Jan. 6, 1993)
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